IRES-based Vector Coexpressing FGF2 and Cyr61 Provides Synergistic and Safe Therapeutics of Lower Limb Ischemia

نویسندگان

  • Audrey Rayssac
  • Charles Neveu
  • Mélanie Pucelle
  • Loïc Van den Berghe
  • Leonel Prado-Lourenco
  • Jean-François Arnal
  • Xavier Chaufour
  • Anne-Catherine Prats
چکیده

Due to the lack of an adequate conventional therapy against lower limb ischemia, gene transfer for therapeutic angiogenesis is seen as an attractive alternative. However, the possibility of side effects, due to the expression of large amounts of angiogenic factors, justifies the design of devices that express synergistic molecules in low controlled doses. We have developed an internal ribosome entry site (IRES)-based bicistronic vector expressing two angiogenic molecules, fibroblast growth factor 2 (FGF2), and Cyr61. Through electrotransfer into the ApoE(-/-) mice hindlimb ischemic muscle model, we show that the IRES-based vector gives more stable expression than either monocistronic plasmid. Furthermore, laser Doppler analysis, arteriography, and immunochemistry clearly show that the bicistronic vector promotes a more abundant and functional revascularization than the monocistronic vectors, despite the fact that the bicistronic system produces 5-10 times less of each angiogenic molecule. Furthermore, although the monocistronic Cyr61 vector accelerates B16 melanoma growth in mice, the bicistronic vector is devoid of such side effects. Our results show an active cooperation of FGF2 and Cyr61 in therapeutic angiogenesis of hindlimb ischemia, and validate the use of IRES-based bicistronic vectors for the coexpression of controlled low doses of therapeutic molecules, providing perspectives for a safer gene therapy of lower limb ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of a Mammalian IRES-based Expression Vector to Amplify a Bispecific Antibody; Blinatumomab

Blinatumomab, the bispecific T cell engager, has been demonstrated as the most successful BsAb to date. Throughout the past decade, vector design has great importance for the expression of monoclonal antibody in Chinese hamster ovary (CHO) cells. It has been indicated that expression plasmids based on the elongation factor-1 alpha (EF-1 alpha) gene and DHFR selection marker can be highly effect...

متن کامل

Construction of a Mammalian IRES-based Expression Vector to Amplify a Bispecific Antibody; Blinatumomab

Blinatumomab, the bispecific T cell engager, has been demonstrated as the most successful BsAb to date. Throughout the past decade, vector design has great importance for the expression of monoclonal antibody in Chinese hamster ovary (CHO) cells. It has been indicated that expression plasmids based on the elongation factor-1 alpha (EF-1 alpha) gene and DHFR selection marker can be highly effect...

متن کامل

FGF2 Translationally Induced by Hypoxia Is Involved in Negative and Positive Feedback Loops with HIF-1α

BACKGROUND Fibroblast growth factor 2 (FGF2) is a major angiogenic factor involved in angiogenesis and arteriogenesis, however the regulation of its expression during these processes is poorly documented. FGF2 mRNA contains an internal ribosome entry site (IRES), a translational regulator expected to allow mRNA expression during cellular stress. METHODOLOGY/PRINCIPAL FINDINGS In the present s...

متن کامل

LATE EMBOLECTOMY FOR LIMB OR KNEE SALVAGE IN ACUTE LOWER LIMB ISCHEMIA: A NEW PROTOCOL

Embolectomy has long been the gold standard for treating limbs acutely threatened by arterial occlusion. Delayed embolectomy has not been investigated adequately due to the belief that accompanying mortality and morbidity render the case futile. Following our previous experience with late arterial repair for leg or knee salvage I we applied the same principle to limbs threatened with prolo...

متن کامل

FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1alpha

Background: Fibroblast growth factor 2 (FGF2) is a major angiogenic factor involved in angiogenesis and arteriogenesis, however the regulation of its expression during these processes is poorly documented. FGF2 mRNA contains an internal ribosome entry site (IRES), a translational regulator expected to allow mRNA expression during cellular stress. Methodology/Principal Findings: In the present s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Therapy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2009